All Issue

2020 Vol.38, Issue 5 Preview Page

Research Article


October 2020. pp. 675-685
Abstract


References
1 
An HS, Hong JW, Jang EJ, Lee AK, Kim JY (2018) Current status and recognition of floral preservatives in Korean flower shops. Flower Res J 26:209-215. doi:10.11623/frj.2018.26.4.06
10.11623/frj.2018.26.4.06
2 
Burdett AN (1970) The cause of bent neck in cut roses. J Am Soc Hortic Sci 95:427-431
3 
Chaerle L, Hagenbeek D, De Bruyne E, Valcke R, Van Der Straeten D (2004) Thermal and chlorophyll-fluorescence imaging distinguish plant-pathogen interactions at an early stage. Plant and Cell Physiol 45:887-896. doi:10.1093/pcp/pch097
10.1093/pcp/pch09715295072
4 
Chaerle L, Van Der Straeten D (2000) Imaging techniques and the early detection of plant stress. Trends in Plant Sci 5:495-501. doi:10.1016/S1360-1385(00)01781-7
10.1016/S1360-1385(00)01781-7
5 
Costa JM, Grant OM, Chaves MM (2013) Thermography to explore plant-environment interactions. J Exp Bot 64:3937-3949. doi:10.1093/jxb/ert029
10.1093/jxb/ert02923599272
6 
Hashimoto Y, Ino T, Kramer PJ, Naylor AW, Strain BR (1984) Dynamic analysis of water stress of sunflower leaves by means of a thermal image processing system. Plant Physiol 76:266-269. doi:10.1104/pp.76.1.266
10.1104/pp.76.1.26616663812PMC1064268
7 
Hoogerwerf A, Pladdet FC, Kempkes MMJ, van Doorn WG (1989) Measurement of opinions on the relationship between environmental factors and keeping quality of ornamentals. Acta Hortic 261:241-248. doi:10.17660/ActaHortic.1989.261.31
10.17660/ActaHortic.1989.261.31
8 
Idso SB (1982) Non-water-stressed baselines: a key to measuring and interpreting plant water stress. Agric Meteorol 27:59-70. doi:10.1016/0002-1571(82)90020-6
10.1016/0002-1571(82)90020-6
9 
In BC, Inamoto K, Doi M, Park SA (2016) Using thermography to estimate leaf transpiration rates in cut roses for the development of vase life prediction models. Hortic Environ Biotechnol 57:53-60. doi:10.1007/s13580-016-0117-6
10.1007/s13580-016-0117-6
10 
Jones HG, Leinonen I (2003) Thermal imaging for the study of plant water relations. J Agric Meteorol 59:205-217. doi:10.2480/agrmet.59.205
10.2480/agrmet.59.205
11 
Kim GS, Mo CY, Kim GY, Lim JG, Kang JS, Yoo HC, Oh GM (2018a) A study on the applicability of machine learning for the discrimination of strawberry maturity. Proceedings of the KSAM & ARCs 2018 Autumn Conference 23:260
12 
Kim YJ, Nho CW, Kim HY (2018b) Smart farm technology, policy trends and future smart farm technology. Convergence Res review 4:40-59
13 
Kim GY, Ryu KH, Chae HY (1999) Measurement of stress related crop temperature variations. J Bio-Environ Control 8:233-236
14 
Kim NK, Cho SR (2017) A national policy and technology research trends of smart farm system based on IoT. J Proceedings Symp Kor Inst Commun Info Sci 2017:550-551
15 
Kumar N, Srivastava GC, Dixit K (2008) Hormonal regulation of flower senescence in roses(Rosa hybrida L.). Plant Growth Regul 55:65-71. doi:10.1007/s10725-008-9259-6
10.1007/s10725-008-9259-6
16 
Lee JH, Choi SY, Park HM, Oh SI, Lee AK (2019) Prediction of the vase life of cut lily flowers using thermography. J People Plants Environ 22:233-239. doi:10.11628/ksppe.2019.22.3.233
10.11628/ksppe.2019.22.3.233
17 
Lee JH, Kang MJ, Lee JH, Park SM, Lee AK (2014) Measurement technology of water stress for Cucumis sativus using infrared thermography. Hortic Sci Technol 32:221-222
18 
Lee JH, Oh SI, Lee AK (2017) Measurement and prediction of Cladosporium cucumerinum and Collectotrichum orbiculare using infrared thermography. QIRT 2017. doi:10.21611/qirt.2017.028
10.21611/qirt.2017.028
19 
Lee MS, Choe YC (2009) Forecasting sow's productivity using the machine learning models. J Agric Ext Community Dev 16:939-965
20 
Lee YB, Yeon JY, Kim WS (2018) Postharvest management condition and contaminant degree in handling of cut rose flowers for export. Flower Res J 26:28-35. doi:10.11623/frj.2018.26.1.04
10.11623/frj.2018.26.1.04
21 
Lindenthal M, Steiner U, Dehne HW, Oerke EC (2005) Effect of downy mildew development on transpiration of cucumber leaves visualized by digital infrared thermography. Phytopathology 95:233-240. doi:10.1094/PHYTO-95/0223
10.1094/PHYTO-95-023318943115
22 
McQueen RJ, Garner SR, Nevill-Manning CG, Witten IH (1995) Applying machine learning to agricultural data. Computers and Electronics in Agric 12:275-293. doi:10.1016/0168-1699(95)98601-9
10.1016/0168-1699(95)98601-9
23 
Ministry of Agriculture, Food and Rural Affairs (MAFRA) (2018) Present condition of flower production 2017. Sejong. Korea
24 
Na DY (2018) Machine learning algorithm and IoT technique research for animal welfare smart farm. PhD Diss., Konkuk Univ., Seoul, Korea
25 
Oh JW, Bak BW, YU HC (2019) Expectation of cabbage price based on machine learning. Kor Assn Computer Educ 23:121-124
26 
Oh SI, Lee JH, Lee AK (2017) Pretreatments and MEFI applications for improving postharvest quality of cut spray Rosa hybrida L. 'Lovely Lydia'. Hortic Sci Technol 36:237-244. doi:10.12972/kjhst.20180024
10.12972/kjhst.20180024
27 
Roberts AV, Debener T, Gudis S (2003) Encyclopedia of rose science. Elsevier Academic Press, Oxford, UK and San Diego, USA pp.564-573
28 
van Doorn WG (1989) Role of physiological processes, microorganism, and air embolism in vascular blockage of cut rose flower. Acta Hortic 261:27-34. doi:10.17660/ActaHortic.1989.261.3
10.17660/ActaHortic.1989.261.3
29 
Wang M, Ling N, Dong X, Zhu Y, Shen Q, Guo S (2012) Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum. Plant Physiol and Biochem 61:153-161. doi:10.1016/j.plaphy.2012.09.015
10.1016/j.plaphy.2012.09.01523103050
30 
Zia S, Spohrer L, Wenyong D, Spreer W, Romano G, Xiongkui H, Joachim M (2011) Monitoring physiological responses to water stress in two maize varieties by infrared thermography. Int J Agric & Biol Eng 4:7-15. doi:10.3965/j.issn.1934-6344.2011.03.007-015
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :5
  • Pages :675-685
  • Received Date :2020. 07. 21
  • Revised Date :2020. 08. 10
  • Accepted Date : 2020. 08. 20