All Issue

2019 Vol.37, Issue 4 Preview Page

August 2019. pp. 437-447
Abstract


References
1 

Ali S, Ganai BA, Kamili AN, Bhat AA, Mir ZA, Bhat JA, Tyagi A, Islam ST, Mushtaq M et al. (2018) Pathogenesis-related proteins and peptides as promising tools for engineering plants with multiple stress tolerance. Microbiol Res 212-213:29-37. doi:10.1016/j.micres.2018.04.008

10.1016/j.micres.2018.04.00829853166
2 

Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106. doi:10.1186/gb-2010-11-10-r106

10.1186/gb-2010-11-10-r10620979621PMC3218662
3 

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS et al. (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29. doi:10.1038/75556

10.1038/7555610802651PMC3037419
4 

Bita CE, Gerats T (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. doi:10.3389/fpls.2013.00273

10.3389/fpls.2013.0027323914193PMC3728475
5 

Buckhout TJ, Yang TJW, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics 10:147. doi:10.1186/1471-2164-10-147

10.1186/1471-2164-10-14719348669PMC2676303
6 

Cohen SD, Tarara JM, Gambetta GA, Matthews MA, Kennedy JA (2012) Impact of diurnal temperature variation on grape berry development, proanthocyanidin accumulation, and the expression of flavonoid pathway genes. J Exp Bot 63:2655-2665. doi:10.1093/jxb/err449

10.1093/jxb/err44922268158PMC3346226
7 

Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J et al. (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomic 7:111-134. doi:10.1007/s10142-006-0039-y

10.1007/s10142-006-0039-y17136344
8 

Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC et al. (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429. doi:10.1186/1471-2164-8-429

10.1186/1471-2164-8-42918034876PMC2220006
9 

Greer DH, Weedon MM (2013) The impact of high temperatures on Vitis vinifera cv. Semilion grapevine performance and berry ripening. Front Plant Sci 4:491. doi:10.3389/fpls.2013.00491

10.3389/fpls.2013.0049124348494PMC3848316
10 

Guidoni S, Mannini F, Ferrandino A, Argamante N, Di Stefano R (1997) The effect of grapevine leafroll and rugose wood sanitation on agronomic performance and berry and leaf phenolic content of a Nebbiolo clone (Vitis vinifera L.). Am J Enol Vitic 48:438-442

11 

Huang B, Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J Integr Plant Biol 50:1230-1237. doi:10.1111/j.1744-7909.2008.00735.x

10.1111/j.1744-7909.2008.00735.x19017110
12 

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M (2004) The KEGG resource for deciphering the genome. Nucleic Acids Res 32:D277-D280. doi:10.1093/nar/gkh063

10.1093/nar/gkh06314681412PMC308797
13 

Kaplan F, Kopka J, Sung DY, Zhao W, Popp M, Porat R, Guy CL (2007) Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold-regulated gene expression with modifications in metabolite content. Plant J 50:967-981. doi:10.1111/j.1365-313X.2007.03100.x

10.1111/j.1365-313X.2007.03100.x17461790
14 

Kim SA, Ahn SY, Son IC, Yun HK (2015) Expression of genes related to skin coloration and sugar accumulation in grape berries at ripening stages under high temperatures. Int Proc Chem Biol Environ Eng 87:25-31. doi:10.12791/KSBEC.2016.25.1.9

10.12791/KSBEC.2016.25.1.9
15 

Kim SA, Ahn SY, Yun HK (2016) Transcriptome analysis of grapevine shoots exposed to chilling temperature for four weeks. Hortic Environ Biotechnol 57:161-172. doi:10.1007/s13580-0118-5

10.1007/s13580-015-0118-5
16 

Kim SA, Ahn SY, Yun HK (2017) Transcriptomic changes in dormant buds of two grapevine cultivars following exposure to freezing temperature. Hortic Environ Biotechnol 58:152-161. doi:10.1007/s13580-017-0417-8

10.1007/s13580-017-0147-8
17 

Kliewer WM, Torres RE (1972) Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic 23:71-77

18 

Liu GT, Wang JF, Cramer G, Dai ZW, Duan W, Xu HG, Wu BH, Fan PG, Wang LJ et al. (2012) Transcriptomic analysis of grape (Vitis vinifera L.) leaves during and after recovery from heat stress. BMC Plant Biol 12:174. doi:10.1186/1471-2229-12-174

10.1186/1471-2229-12-17423016701PMC3497578
19 

Mori K, Goto-Yamamoto N, Kitayama M, Hashizume K (2007) Loss of anthocyanins in red-wine grape under high temperatures. J Exp Bot 58:1935-1945. doi:10.1093/jxb/erm055

10.1093/jxb/erm05517452755
20 

Koprivova A, Kopriva S (2008) Lessons from investigation of regulation of APS reductase by salt stress. Plant Signal Behav 8:567-569. doi:10.1104/pp.107.113175

10.1104/pp.107.11317518218969PMC2259037
21 

Mori K, Sugaya S, Gemma H (2005) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105:319-330. doi:10.1016/j.scienta.2005.01.032

10.1016/j.scienta.2005.01.032
22 

Kim SA, Ahn SY, Yun HK (2018) Selection of differentially expressed genes using the transcriptome analysis of ripening grape berries in response to high temperature. J Agric Sci - Sri Lanka 13:15-30. doi:10.4038/jas.v13i1.8297

10.4038/jas.v13i1.8297
23 

Kós PB, Oláh R, Zok A, Horvath GV (2008) The role of ferritin in enhancing the stress tolerance of grapevine. Acta Biol Szeged 52:41-43

24 

Koyama K, Ikeda H, Poudel PR, Goto-Yamamoto N (2012) Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78:54-64. doi:10.1016/j.phytochem.2012.02.026

10.1016/j.phytochem.2012.02.02622455871
25 

Nawkar GM, Maibam P, Park JH, Woo SG, Kim CY, Lee SY, Kang CH (2017) In silico study on Arabidopsis BAG gene expression in response to environmental stresses. Protoplasma 254:409-421. doi:10.1007/s00709-016-0961-3

10.1007/s00709-016-0961-327002965PMC5216074
26 

Loqué D, Ludewig U, Yuan L, von Wirén N (2005) Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole. Plant Physiol 137:671-680. doi:10.1104/pp.104.051268

10.1104/pp.104.05126815665250PMC1065367
27 

Matsumoto K, Kim BK, Oahn VT, Seo JH, Yoon HG, Park MK, Hwang YS, Chun JP (2007) Comparison of sugar compositions and quality parameters during berry ripening between grape cultivars. Korean J Hortic Sci Technol 25:230-234

28 

Park EK, Ryu JC, Kim TK (2010) Analysis of consumer preferences for wine. Korean J Food Preserv 17:418-424

29 

Salazar-Parra C, Aguirreolea J, Sanchez Diaz M, Irigoyen JJ, Morales F (2012) Climate change (elevated CO2, elevated temperature and moderate drought) triggers the antioxidant enzymes response of grapevine cv. Tempranillo, avoiding oxidative damage. Physiol Plant 144:99-110. doi:10.1111/j.1399-3054.2011.01524.x

10.1111/j.1399-3054.2011.01524.x21929631
30 

Saxe H, Cannell MGR, Johnsen O, Ryan MG, Vourlitis G (2001) Tansley review No.123. Tree and forest functioning in response to global warming. New Phytol 149:369-399. doi:10.1046/j.1469-8137.2001.00057.x

10.1046/j.1469-8137.2001.00057.x
31 

Son IC, Han JH, Kim SH, Oh SI, Moon KH, Choi IM (2014) Effects of the elevated temperature and carbon dioxide on vine growth and fruit quality of 'Campbell Early' grapevines (Vitis labruscana). Korean J Hortic Sci Technol 32:781-787. doi:10.7235/hort.2014.13059

10.7235/hort.2014.13059
32 

Szenteleki K, Ladanyi M, Gaal M, Zanathy G, Bisztray G (2012) Climatic risk factors of Central Hungarian grape growing regions. Appl Ecol Environ Res 10:87-105. doi:10.15666/aeer/1001_087105

10.15666/aeer/1001_087105
33 

Timucin E, Sezerman OU (2018) Thermostability of the PYL−PP2C heterodimer is dependent on magnesium: in silico insights into the link between heat stress response and magnesium deficiency in plants. J Chem Inf Model 58:661-672. doi:10.1021/acs.jcim.7b00655

10.1021/acs.jcim.7b0065529437392
34 

Yang Q, Liu K, Niu X,Wang Q, Wan Y, Yang F, Li G, Wang Y, Wang R (2018) Genome-wide identification of PP2C genes and their expression profiling in response to drought and cold stresses in Medicago truncatula. Sci Rep 8:12841. doi:10.1038/s41598-018-29627-9

10.1038/s41598-018-29627-930150630PMC6110720
35 

Zha Q, Xi XJ, Jiang AL, Tian YH (2016) High temperature affects photosynthetic and molecular processes in field-cultivated Vitis vinifera L. × Vitis labrusca L. Photochem Photobiol 92:446-454. doi:10.1111/php.12584

10.1111/php.1258426946321
36 

Zhang J, Huang W, Pan Q, Liu Y (2005) Improvement of chilling tolerance and accumulation of heat shock proteins in grape berries (Vitis vinifera cv. Jingxiu) by heat pretreatment. Postharvest Biol Technol 38:80-90. doi:10.1016/j.postharvbio.2005.05.008

10.1016/j.postharvbio.2005.05.008
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 37
  • No :4
  • Pages :437-447
  • Received Date :2019. 03. 26
  • Revised Date :2019. 04. 28
  • Accepted Date : 2019. 04. 30