All Issue

2020 Vol.38, Issue 4 Preview Page

Research Article


August 2020. pp. 474-486
Abstract


References
1 

Alwi SSS, Cavell BE, Telang U, Morris ME, Parry BM, Packham G (2010) In vivo modulation of 4E binding protein 1 (4E-BP1) phosphorylation by watercress: a pilot study. Brit J Nutr 104:1288-1296. doi:10.1017/S0007114510002217

10.1017/S000711451000221720546646PMC3694331
2 

Banerjee R, Batschauer A (2005) Plant blue-light receptors. Planta 220:498-502. doi:10.1007/s00425-004-1418-z

10.1007/s00425-004-1418-z15714356
3 

Biddington N, Ling B (1983) The germination of watercress (Rorippa nasturtium-aquaticum) seeds. I. The effects of age, storage, temperature, light and hormones on germination. J Hortic Sci 58:417-426. doi:10.1080/00221589.1983.11515138

10.1080/00221589.1983.11515138
4 

Bok GJ, Choi JY, Lee HJ, Lee KY, Park JS (2019) Microbubbles increase glucosinolate contents of watercress (Nasturtium officinale R. Br.) hrown in hydroponic cultivation. Prot Hortic Plant Fact 28:158-165. doi:10.12791/KSBEC.2019.28.2.158

10.12791/KSBEC.2019.28.2.158
5 

Botto JF, Sanchez RA, Whitelam GC, Casal JJ (1996) Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol 110:439-444. doi:10.1104/pp.110.2.439

10.1104/pp.110.2.43912226195PMC157738
6 

Briggs WR, Christie JM (2002) Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7:204-210. doi:10.1016/S1360-1385(02)02245-8

10.1016/S1360-1385(02)02245-8
7 

Brodersen CR, Vogelmann TC (2010) Do changes in light direction affect absorption profiles in leaves? Funct Plant Biol 37:403-412. doi:10.1071/FP09262

10.1071/FP09262
8 

Choi IL, Wang L, Lee JH, Han SJ, Ko YW, Kim YD, Kang HM (2019) Effect of LED and QD-LED(quantum dot) treatments on production and quality of red radish(Raphanus sativus L.) sprout. Prot Hortic Plant Fact 28:265-272. doi:10.12791/KSBEC.2019.28.3.265

10.12791/KSBEC.2019.28.3.265
9 

Choi JY, Kim SJ, Bok KJ, Lee KY, Park JS (2018) Effect of different nutrient solution and light quality on growth and glucosinolate contents of watercress in hydroponics. Prot Hortic Plant Fact 27:371-380. doi:10.12791/KSBEC.2018.27.4.371

10.12791/KSBEC.2018.27.4.371
10 

Cruz RMS, Vieira MC, Silva CLM (2008) Effect of heat and thermosonication treatments on watercress (Nasturtium officinale) vitamin C degradation kinetics. Innov Food Sci Emerg 9:483-488. doi:10.1016/j.ifset.2007.10.005

10.1016/j.ifset.2007.10.005
11 

Despommier D (2010) The vertical farm: feeding the world in the 21st century. Thomas Dunne Books, New York

12 

Despommier D (2013) Farming up the city: the rise of urban vertical farms. Trends Biotechnol 31:388-389. doi:10.1016/j.tibtech.2013.03.008

10.1016/j.tibtech.2013.03.00823790758
13 

Di Noia J (2014) Peer reviewed: Defining powerhouse fruits and begetables: A nutrient density approach. Prev Chronic Dis 11. doi:10.5888/pcd11.130390

10.5888/pcd11.13039024901795PMC4049200
14 

Folta KM (2004) Green light stimulates early stem elongation, antagonizing light-mediated growth inhibition. Plant Physiol 135:1407-1416. doi:10.1104/pp.104.038893

10.1104/pp.104.03889315247396PMC519058
15 

Folta KM, Maruhnich SA (2007) Green light: a signal to slow down or stop. J Exp Bot 58:3099-3111. doi:10.1093/jxb/erm130

10.1093/jxb/erm13017630292
16 

Goins GD, Yorio NC, Sanwo MM, Brown CS (1997) Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting. J Exp Bot 48:1407-1413. doi:10.1093/jxb/48.7.1407

10.1093/jxb/48.7.140711541074
17 

Govindjee (1995) Sixty-three years since Kautsky: chlorophylla fluorescence. Aust J Plant Physiol 22:131-160. doi:10.1071/PP9950131

10.1071/PP9950131
18 

Govindjee (2004) Chlorophyll a fluorescence: a bit of basics and history. Kluwer Academic Publishers, Dordrecht, Netherlands

19 

He J, Qin L, Chong EL, Choong TW, Lee SK (2017) Plant growth and photosynthetic characteristics of Mesembryanthemum crystallinum grown aeroponically under different blue- and red-LEDs. Front Plant Sci 8:361. doi:10.3389/fpls.2017.00361

10.3389/fpls.2017.00361
20 

Hernandez R, Kubota C (2016) Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environ Exp Bot 121:66-74. doi:10.1016/j.envexpbot.2015.04.001

10.1016/j.envexpbot.2015.04.001
21 

Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Califonia Agricultural Experiment Station, Califonia, USA

22 

Hogewoning SW, Trouwborst G, Maljaars H, Poorter H, van Ieperen W, Harbinson J (2010) Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J Exp Bot 61:3107-3117. doi:10.1093/jxb/erq132

10.1093/jxb/erq13220504875PMC2892149
23 

Hopkins WG, Huner NPA (2004) Introduction to plant physiology. John Wily and Sons, Inc., NJ, USA

24 

International Organization for Standardization (ISO) (1992) Rapeseed: Determination of glucosinolates content - part 1. method using high-performance liquid chromatography. International Standard Organization, Geneva, Sweitzerland

25 

Johkan M, Shoji K, Goto F, Hahida S-n, Yoshihara T (2012) Effect of green light wavelength and intensity on photomorphogenesis and photosynthesis in Lactuca sativa. Environ Exp Bot 75:128-133. doi:10.1016/j.envexpbot.2011.08.010

10.1016/j.envexpbot.2011.08.010
26 

Johkan M, Shoji K, Goto F, Hashida S-n, Yoshihara T (2010) Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814. doi:10.21273/HORTSCI.45.12.1809

10.21273/HORTSCI.45.12.1809
27 

Kang WH, Zhang F, Lee JW, Son JE (2016) Improvement of canopy light distribution, photosynthesis, and growth of lettuce (Lactuca sativa L.) in plant factory conditions by using fitters to diffuse light from LEDs. Korean J Hortic Sci Technol 34:84-93. doi:10.12972/kjhst.20160015

10.12972/kjhst.20160015
28 

Kim HH, Goins GD, Wheeler RM, Sager JC (2004) Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann Bot 94:691-697. doi:10.1093/aob/mch192

10.1093/aob/mch19215347557PMC4242213
29 

Kim YJ, Kim HM, Hwang SJ (2016) Growth and bioactive compounds of ice plants as affected by light quality in a closed-type plant production system. Korean J Hortic Sci Technol 34:878-885. doi:10.12972/kjhst.20160092

10.12972/kjhst.20160092
30 

Kopsell DA, Kopsell DE, Lefsrud MG, Curran-Celentano J, Dukach LE (2004) Variation in lutein, β-carotene, and chlorophyll concentrations among Brassica oleracea cultigens and seasons. HortScience 39:361-364. doi:10.21273/HORTSCI.39.2.361

10.21273/HORTSCI.39.2.361
31 

Kopsell DA, Sams CE (2013) Increases in shoot tissue pigments, glucosinolates, and mineral elements in sprouting broccoli after exposure to short-duration blue light from light emitting diodes. J Am Soc Hortic Sci 138:31-37. doi:10.21273/JASHS.138.1.31

10.21273/JASHS.138.1.31
32 

Kozai T, Fujiwara K, Runkle ES (2016) LED lighting for urban agriculture. Springer Science+Business Media, Singapore. doi:10.1007/978-981-10-1848-0

10.1007/978-981-10-1848-0
33 

Lee DS, Jeon DS, Park SG, Arasu MV, Al-Dhabi NA, Kim SC, Kim SJ (2015) Effect of cold storage on the contents of glucosinolates in Chinese cabbage (Brassica rapa L. ssp. pekinensis). South Indian J Biol Sci 1:38-42. doi:10.22205/sijbs/2015/v1/i1/100441

10.22205/sijbs/2015/v1/i1/100441
34 

Lee HJ, Chun JH, Kim SJ (2017) Effects of pre harvest light treatments (LEDs, fluorescent lamp, UV-C) on glucosinolate contents in rocket salad (Eruca sativa). Hortic Sci Technol 35:178-187. doi:10.12972/kjhst.20170021

10.12972/kjhst.20170021
35 

Lee JS, Kim YH (2014) Growth and anthocyanins of lettuce grown under red or blue light-emitting diodes with distinct peak wavelength. Korean J Hortic Sci Technol 32:330-339. doi:10.7235/hort.2014.13152

10.7235/hort.2014.13152
36 

Li Q, Kubota C (2009) Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ Exp Bot 67:59-64. doi:10.1016/j.envexpbot.2009.06.011

10.1016/j.envexpbot.2009.06.011
37 

Lin C, Ahmad M, Cashmore AR (1996) Arabidopsis cryptochrome 1 is a soluble protein mediating blue light‐dependent regulation of plant growth and development. Plant J 10:893-902. doi:10.1046/j.1365-313X.1996.10050893.x

10.1046/j.1365-313X.1996.10050893.x8953250
38 

Lin C, Ahmad M, Gordon D, Cashmore AR (1995) Expression of an Arabidopsis cryptochrome gene in transgenic tobacco results in hypersensitivity to blue, UV-A, and green light. Proc Natl Acad Sci USA 92:8423-8427. doi:10.1073/pnas.92.18.8423

10.1073/pnas.92.18.84237667306PMC41169
39 

Long SP, Humphries S, Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Biol 45:633-662. doi:10.1146/annurev.pp.45.060194.003221

10.1146/annurev.pp.45.060194.003221
40 

Manion LK, Kopsell DE, Kopsell DA, Sams CE, Rhykerd RL (2014) Selenium fertilization influences biomass, elemental accumulations, and phytochemical concentrations in watercress. J Plant Nutr 37:327-342. doi:10.1080/01904167.2013.789110

10.1080/01904167.2013.789110
41 

Massa G, Graham T, Haire T, Flemming C, Newsham G, Wheeler R (2015) Light-emitting diode light transmission through leaf tissue of seven different crops. HortScience 50:501-506. doi:10.21273/HORTSCI.50.3.501

10.21273/HORTSCI.50.3.501
42 

Matsuda R, Ohashi-Kaneko K, Fujiwara K, Kurata K (2007) Analysis of the relationship between blue-light photon flux density and the photosynthetic properties of spinach (Spinacia oleracea L.) leaves with regard to the acclimation of photosynthesis to growth irradiance. J Soil Sci Plant Nutr 53:459-465. doi:10.1111/j.1747-0765.2007.00150.x

10.1111/j.1747-0765.2007.00150.x
43 

Mickens M, Skoog E, Reese L, Barnwell P, Spencer L, Massa G, Wheeler R (2018) A strategic approach for investigating light recipes for 'Outredgeous' red romaine lettuce using white and monochromatic LEDs. Life Sci Space Res 19:53-62. doi:10.1016/j.lssr.2018.09.003

10.1016/j.lssr.2018.09.00330482283
44 

Mithen R (2001) Glucosinolates-biochemistry, genetics and biological activity. Plant Growth Regul 34:91-103. doi:10.1023/A:1013330819778

10.1023/A:1013330819778
45 

Nascimento LB, Leal-Costa MV, Coutinho MA, Moreira Ndos S, Lage CL, Barbi Ndos S, Costa SS, Tavares ES (2013) Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light. J Photochem Photobiol 89:391-399. doi:10.1111/php.12006

10.1111/php.1200623057576
46 

Oh SI, Lee JH, Lee AK (2019) Growth, antioxidant concentrations and activity in Sedum takesimense as affected by supplemental LED irradiation with light quality. Hortic Sci Technol 37:589-597

47 

Ohashi-Kaneko K, Takase M, Kon N, Fujiwara K, Kurata K (2007) Effect of light quality on growth and vegetable quality in leaf lettuce, spinach and komatsuna. Environ Control Biol 45:189-198. doi:10.2525/ecb.45.189

10.2525/ecb.45.189
48 

Palaniswamy UR, McAvoy RJ (2001) Watercress: A salad crop with chemopreventive potential. HortTechnology 11:622-626. doi:10.21273/HORTTECH.11.4.622

10.21273/HORTTECH.11.4.622
49 

Palaniswamy UR, McAvoy RJ, Bible BB (1997) Supplemental light before harvest increases phenethyl isothiocyanate in watercress under 8-hour photoperiod. HortScience 32:222-223. doi:10.21273/HORTSCI.32.2.222

10.21273/HORTSCI.32.2.222
50 

Rodrigues L, Silva I, Poejo J, Serra AT, Matias AA, Simplicio AL, Bronze MR, Duarte CMM (2016) Recovery of antioxidant and antiproliferative compounds from watercress using pressurized fluid extraction. RSC Advances 6:30905-30918. doi:10.1039/C5RA28068K

10.1039/C5RA28068K
51 

Sager JC, Edwards JL, Klein WH (1982) Light energy utilization efficiency for photosynthesis. Trans ASAE 25:1737-1746. doi:10.13031/2013.33799

10.13031/2013.33799
52 

Samuolienė G, Brazaitytė A, Sirtautas R, Viršilė A, Sakalauskaitė J, Sakalauskienė S, Duchovskis P (2013) LED illumination affects bioactive compounds in romaine baby leaf lettuce. J Sci Food Agric 93:3286-3291. doi:10.1002/jsfa.6173

10.1002/jsfa.617323584932
53 

Schreiber U, Bilger W (1993) Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Springer, Berlin Heidelberg N.Y. doi:10.1007/978-3-642-78020-2_8

10.1007/978-3-642-78020-2_8
54 

Schuerger AC, Brown CS, Stryjewski EC (1997) Anatomical features of pepper plants (Capsicum annuum L.) grown under red light-emitting diodes supplemented with blue or far-red light. Ann Bot 79:273-282. doi:10.1006/anbo.1996.0341

10.1006/anbo.1996.034111540425
55 

Senger H (1982) The effect of blue light on plants and microorganisms. Photochem Photobiol 35:911-920. doi:10.1111/j.1751-1097.1982.tb02668.x

10.1111/j.1751-1097.1982.tb02668.x
56 

Smith HL, McAusland L, Murchie EH (2017) Don't ignore the green light: exploring diverse roles in plant processes. J Exp Bot 68:2099-2110. doi:10.1093/jxb/erx098

10.1093/jxb/erx09828575474
57 

Son KH, Oh MM (2015) Growth, photosynthetic and antioxidant parameters of two lettuce cultivars as affected by red, green, and nlue light-emitting diodes. Hortic Environ Biotechnol 56:639-653. doi:10.1007/s13580-015-1064-3

10.1007/s13580-015-1064-3
58 

Son KH, Park JH, Kim D, Oh MM (2012) Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J Hortic Sci Technol 30:664-672. doi:10.7235/hort.2012.12063

10.7235/hort.2012.12063
59 

Tennessen DJ, Singsaas EL, Sharkey TD (1994) Light-emitting diodes as a light source for photosynthesis research. Photosynth Res 39:85-92. doi:10.1007/BF00027146

10.1007/BF0002714624311004
60 

Wang J, Lu W, Tong Y, Yang Q (2016) Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomatal development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front Plant Sci 7:250. doi:10.3389/fpls.2016.00250

10.3389/fpls.2016.00250
61 

Wink M (2010) Functions and biotechnology of plant secondary metabolites. Wiley-Blackwell, Chichester, UK. doi:10.1002/9781444318876

10.1002/9781444318876
62 

Xiaoying L, Shirong G, Taotao C, Zhigang X, Tezuka T (2012) Regulation of the growth and photosynthesis of cherry tomato seedlings by different light irradiations of light emitting diodes (LED). Afr J Biotechnol 11:6169-6177. doi:10.5897/AJB11.1191

10.5897/AJB11.1191
63 

Yoon HI, Kim J-S, Kim D, Kim CY, Son JE (2019) Harvest strategies to maximize the annual production of bioactive compounds, glucosinolates, and total antioxidant activities of kale in plant factories. Hortic Environ Biotechnol 60:883-894. doi:10.1007/s13580-019-00174-0

10.1007/s13580-019-00174-0
64 

Zahradníková H, Petříková K (2013) Nematocid effects of watercress (Nasturtium officinale R. Br.). Acta Univ Agric Silvic Mendel Brun 61:233-236. doi:10.11118/actaun201361010233

10.11118/actaun201361010233
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :4
  • Pages :474-486
  • Received Date :2019. 10. 30
  • Revised Date :2020. 02. 19
  • Accepted Date : 2020. 04. 20