All Issue

2020 Vol.38, Issue 5 Preview Page

Research Article


October 2020. pp. 717-729
Abstract


References
1 
Chang SW, Kim SK, Kim HD (2001) Chemical control of powdery mildew of sweet pumpkin in Korea. Res Plant Dis 7:31-36
2 
Cho MC, Om YH, Heo YC, Cheong SR, Kim DH, Mok IG (2009) Breeding of powdery mildew resistant squash 'Kwangmyeomg'. Korean Hortic Sci Technol 27:332-335
3 
Cho MC, Om YH, Heo YC, Kim JS, Park HG (2004) Inheritance of powdery mildew resistance, bitterness, fruit rind hardness and fruit shape in Cucurbita spp. Korean J Breed 36:271-275
4 
Cho MC, Om YH, Kim DH, Heo YC, Kim JS, Park HG (2005) Breeding for powdery mildew resistant varieties in Cucurbita moschata. Res Plant Dis 11:106-114. doi:10.5423/RPD.2005.11.2.106
10.5423/RPD.2005.11.2.106
5 
Chung YS, Choi SC, Jun T-H, Kim C (2017) Genotyping-by-sequencing: a promising tool for plant genetics research and breeding. Hortic. Environ. Biotechnol. 58, 425-431. doi:10.1007/s13580-017-0297-8
10.1007/s13580-017-0297-8
6 
Cohen R, Hanan A, Paris HS (2003) Single-gene resistance to powdery mildew in zucchini squash (Cucurbita pepo). Euphytica 130:433-441. doi:10.1023/A:1023082612420
10.1023/A:1023082612420
7 
Contin ME (1978) Interspecific transfer of powdery mildew resistance in the genus Cucurbita. Ph.D. Dissertation, Cornell University
8 
Gafni A, Calderon CE, Harris R, Buxdorf K, Dafa-Berger A, Zeilinger-Reichert E, Levy M (2015) Biological control of the cucurbit powdery mildew pathogen Podosphaera xanthii by means of the epiphytic fungus Pseudozyma aphidis and parasitism as a mode of action. Front plant sci 6:132. doi:10.3389/fpls.2015.00132
10.3389/fpls.2015.0013225814995PMC4356082
9 
Glawe DA (2008) The powdery mildews: a review of the world's most familiar (yet poorly known) plant pathogens. Annu Rev Phytopathol 46:27-51. doi:10.1146/annurev.phyto.46.081407.104740
10.1146/annurev.phyto.46.081407.10474018680422
10 
Guo W-L, Chen B-H, Chen X-J, Guo Y-Y, Yang H-L, Li X-Z, Wang G-Y (2018) Transcriptome profiling of pumpkin (Cucurbita moschata Duch.) leaves infected with powdery mildew. PLoS ONE 13:e0190175. doi:10.1371/journal.pone.0190175
10.1371/journal.pone.019017529320569PMC5761878
11 
Guo W-L, Yang H-L, Guo Y-Y, Chen B-H, Mu J-Y, Wang Y-L, Li X-Z, Zhou J-G (2019) Improved powdery mildew resistance of transgenic tobacco overexpressing the Cucurbita moschata CmSGT1 gene. Front plant sci 10:955. doi:10.3389/fpls.2019.00955
10.3389/fpls.2019.0095531402923PMC6670833
12 
Hafez YM, El-Nagar AS, Elzaawely AA, Kamel S, Maswada HF (2018) Biological control of Podosphaera xanthii the causal agent of squash powdery mildew disease by upregulation of defense-related enzymes. Egyptian Journal of Biological Pest Control 28:57. doi:10.1186/s41938-018-0058-8
10.1186/s41938-018-0058-8
13 
Holdsworth WL, LaPlant KE, Bell DC, Jahn MM, Mazourek M (2016) Cultivar-based introgression mapping reveals wild species-derived Pm-0, the major powdery mildew resistance locus in squash. PLoS ONE 11:e0167715. doi:10.1371/journal.pone.0167715
10.1371/journal.pone.016771527936008PMC5147965
14 
Kim SG, Ro NY, Hur OS, Gwag JG, Huh YC, Rhee JH, Sung JS, Jung HG, Kwon TR, Baek HJ (2014) Evaluation of powdery mildew resistance in Cucurbita spp. Korean J Int Agric 26:544-549. doi:10.12719/KSIA.2014.26.4.544
10.12719/KSIA.2014.26.4.544
15 
Korean Statistical Information Service (KOSIS) (2020) Vegetable Production (Fruit-bearing Vegetables) (Accessed 2020.09.11.) http://kosis.kr/eng/statisticsList/statisticsListIndex.do?menuId=M_01_01&vwcd=MT_ETITLE&parmTabId=M_01_01&statId=1967001&themaId=#SelectStatsBoxDiv
16 
Lebeda A, McGrath MT, Sedláková B (2010) Fungicide resistance in cucurbit powdery mildew fungi. Fungicides 11:221-246. doi:10.5772/14080
10.5772/14080
17 
Lee J, Park D, Kwon Y (2011) Pumpkin-Fall in love with pumpkins. National Institute of Horticultural and Herbal Science Rural Development Administration, Suwon, Korea:128-129
18 
Montero-Pau J, Blanca J, Bombarely A, Ziarsolo P, Esteras C, Martí-Gómez C, Ferriol M, Gómez P, Jamilena M, et al. (2018) De novo assembly of the zucchini genome reveals a whole-genome duplication associated with the origin of the Cucurbita genus. Plant Biotechnol J 16:1161-1171. doi:10.1111/pbi.12860
10.1111/pbi.1286029112324PMC5978595
19 
Montero-Pau J, Blanca J, Esteras C, Martínez-Pérez EM, Gómez P, Monforte AJ, Cañizares J, Picó B (2017) An SNP-based saturated genetic map and QTL analysis of fruit-related traits in Zucchini using Genotyping-by-sequencing. BMC genomics 18:94. doi:10.1186/s12864-016-3439-y
10.1186/s12864-016-3439-y28100189PMC5241963
20 
Moon YG, Choi JK, Kang AS (2010) Yield loss assessment and economic thresholds of squash powdery mildew caused by Sphaerotheca fuliginea. Res Plant Dis 16:285-289. doi:10.5423/RPD.2010.16.3.285
10.5423/RPD.2010.16.3.285
21 
Munger H (1976) Cucurbita martinezii as a source of disease resistance. Veg Imprt Newsl 18
22 
O'brien R (1994) Fungicide resistance in populations of cucurbit powdery mildew (Sphaerotheca fuliginea). New Zealand j of crop and horticultural sci 22:145-149. doi:10.1080/01140671.1994.9513818
10.1080/01140671.1994.9513818
23 
O'Brien R, Vawdrey L, Glass R (1988) Fungicide resistance in cucurbit powdery mildew (Sphaerotheca fuliginea) and its effect on field control. Australian j of experimental agriculture 28:417-423. doi:10.1071/EA9880417
10.1071/EA9880417
24 
PÉREZ-GARCÍA A, Romero D, FERNÁNDEZ-ORTUÑO D, LÓPEZ-RUIZ F, De Vicente A, Tores JA (2009) The powdery mildew fungus Podosphaera fusca (synonym Podosphaera xanthii), a constant threat to cucurbits. Molecular plant pathology 10:153-160. doi:10.1111/j.1364-3703.2008.00527.x
10.1111/j.1364-3703.2008.00527.x19236565PMC6640438
25 
Pirondi A, Vela-Corcía D, Dondini L, Brunelli A, Pérez-García A, Collina M (2015) Genetic diversity analysis of the cucurbit powdery mildew fungus Podosphaera xanthii suggests a clonal population structure. Fungal biology 119:791-801. doi:10.1016/j.funbio.2015.05.003
10.1016/j.funbio.2015.05.00326321728
26 
Polonio Á, Seoane P, Claros MG, Pérez-García A (2019) The haustorial transcriptome of the cucurbit pathogen Podosphaera xanthii reveals new insights into the biotrophy and pathogenesis of powdery mildew fungi. BMC genomics 20:543. doi:10.1186/s12864-019-5938-0
10.1186/s12864-019-5938-031272366PMC6611051
27 
Rhodes A (1964) 54 Vol. 48, No. 1-Plant disease reporter-Jan. 15, 1964 Inheritance of powdery mildew resistance in the genus Cucurbita. The Plant Disease Reporter 48:54
28 
Shim CK, Kim YK, Byeon YW, Park JH, Han EJ, Ko BG, Kim MJ (2018) Screening resistant cultivars against powdery mildew, phytophthora rot, and fusarium wilt and evaluation of cooking oil and egg yolk plus and pH adjusted loess-sulfur mixture to control powdery mildew. Journal of Agriculture & Life Science 52:31-38. doi:10.14397/jals.2018.52.5.31
10.14397/jals.2018.52.5.31
29 
Sun H, Wu S, Zhang G, Jiao C, Guo S, Ren Y, Zhang J, Zhang H, Gong G, et al. (2017) Karyotype stability and unbiased fractionation in the paleo-allotetraploid Cucurbita genomes. Molecular plant 10:1293-1306. doi:10.1016/j.molp.2017.09.003
10.1016/j.molp.2017.09.00328917590
30 
Tanaka K, Fukuda M, Amaki Y, Sakaguchi T, Inai K, Ishihara A, Nakajima H (2017) Importance of prumycin produced by Bacillus amyloliquefaciens SD-32 in biocontrol against cucumber powdery mildew disease. Pest management science 73:2419-2428. doi:10.1002/ps.4630
10.1002/ps.463028560847
31 
Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic acids research 35:W71-W74. doi:10.1093/nar/gkm306
10.1093/nar/gkm30617485472PMC1933133
32 
Vielba-Fernández A, Bellón-Gómez D, Torés JA, de Vicente A, Pérez-García A, Fernández-Ortuño D (2018) Heteroplasmy for the cytochrome b gene in Podosphaera xanthii and its role in resistance to QoI fungicides in Spain. Plant Dis 102:1599-1605. doi:10.1094/PDIS-12-17-1987-RE
10.1094/PDIS-12-17-1987-RE30673427
33 
Weng Y, Sun Z (2012) Major cucurbit crops. In Y-H Wang, TK Behera, and C Kole, eds, Genetics, genomics and breeding of cucurbits. Science Publishers, New Hampshire, USA, pp 1-16. doi:10.1201/b11436-2
10.1201/b11436-2
34 
Xanthopoulou A, Montero-Pau J, Mellidou I, Kissoudis C, Blanca J, Picó B, Tsaballa A, Tsaliki E, Dalakouras A, et al. (2019) Whole-genome resequencing of Cucurbita pepo morphotypes to discover genomic variants associated with morphology and horticulturally valuable traits. Horticulture research 6:94. doi:10.1038/s41438-019-0176-9
10.1038/s41438-019-0176-931645952PMC6804688
35 
Xiang Y, Miller AN, McGrath M, Babadoost M (2019) Genotyping-by-sequencing for analysis of the genetic variation of Podosphaera xanthii, incitant of cucurbit powdery mildew. Plant Dis 104:951-957. doi:10.1094/PDIS-03-19-0513-RE
10.1094/PDIS-03-19-0513-RE31891549
36 
Zhang G, Ren Y, Sun H, Guo S, Zhang F, Zhang J, Zhang H, Jia Z, Fei Z, et al. (2015) A high-density genetic map for anchoring genome sequences and identifying QTLs associated with dwarf vine in pumpkin (Cucurbita maxima Duch.). BMC genomics 16:1101. doi:10.1186/s12864-015-2312-8
10.1186/s12864-015-2312-826704908PMC4690373
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :5
  • Pages :717-729
  • Received Date :2020. 05. 27
  • Revised Date :2020. 06. 22
  • Accepted Date : 2020. 06. 27