All Issue

2020 Vol.38, Issue 5 Preview Page

Research Article


October 2020. pp. 645-659
Abstract


References
1 
Adams SR, Langton FA (2005) Photoperiod and plant growth: a review. J Hortic Sci Biotechnol 80:2-10. doi:10.1080/14620316.2005.11511882
10.1080/14620316.2005.11511882
2 
Ainsworth EA, Gillespie KM (2007) Estimation of total phenolic content and other oxidation substrates in plant tissues using FolinCiocalteu reagent. Nat Protoc 2:875-877. doi:10.1038/nprot.2007.102
10.1038/nprot.2007.10217446889
3 
Ali MB, Khandaker L, Oba S (2009) Comparative study on functional components, antioxidant activity and color parameters of selected colored leafy vegetables as affected by photoperiods. J Food Agric Environ 7:392-398
4 
Blom-Zandstra M, Lampe JE, Ammerlaan FH (1988) C and N utilization of two lettuce genotypes during growth under non-varying light conditions and after changing the light intensity. Physiol Plant 74:147-153. doi:10.1111/j.1399-3054.1988.tb04955.x
10.1111/j.1399-3054.1988.tb04955.x
5 
Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci Technol 28:25-30. doi:10.1016/S0023-6438(95)80008-5
10.1016/S0023-6438(95)80008-5
6 
Carvalho IS, Cavaco T, Carvalho LM, Duque P (2010) Effect of photoperiod on flavonoid pathway activity in sweet potato [Ipomoea batatas (L.) Lam.] leaves. Food Chem 118:384-390. doi:10.1016/j.foodchem.2009.05.005
10.1016/j.foodchem.2009.05.005
7 
Chagvardieff P, d'Aletto T, Andre M (1994) Specific effects of irradiance and CO2 concentration doublings on productivity and mineral content in lettuce. Adv Space Res 14:269-275. doi:10.1016/0273-1177(94)90307-7
10.1016/0273-1177(94)90307-7
8 
Colonna E, Rouphael Y, Barbieri G, De Pascale S (2016) Nutritional quality of ten leafy vegetables harvested at two light intensities. Food Chem 199:702-710. doi:10.1016/j.foodchem.2015.12.068
10.1016/j.foodchem.2015.12.06826776027
9 
Craker LE, Seibert M, Clifford JT (1983) Growth and development of radish (Raphanus sativus L.) under selected light environments. Ann Bot 51:59-64. doi:10.1093/oxfordjournals.aob.a086450
10.1093/oxfordjournals.aob.a086450
10 
Craver JK, Gerovac JR, Lopez RG, Kopsell DA (2017) Light intensity and light quality from sole-source light-emitting diodes impact phytochemical concentrations within Brassica microgreens. J Am Soc Hortic Sci 142:3-12. doi:10.21273/JASHS03830-16
10.21273/JASHS03830-16
11 
Dougher TA, Bugbee B (2001) Evidence for yellow light suppression of lettuce growth. Photochem Photobiol 73:208-212. doi:10.1562/0031-8655(2001)073<0208:EFYLSO>2.0.CO;2
10.1562/0031-8655(2001)073<0208:EFYLSO>2.0.CO;2
12 
Farhan M, Razak SA, Pin KY, Chuah AL (2012) Antioxidant activity and phenolic content of different parts of Orthosiphon stamineus grown under different light intensities. J Trop For Sci 24:173-177
13 
Fu W, Li P, Wu Y (2012) Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci Hortic 135:45-51. doi:10.1016/j.scienta.2011.12.004
10.1016/j.scienta.2011.12.004
14 
Gaudreau L, Charbonneau J, Vézina LP, Gosselin A (1994) Photoperiod and photosynthetic photon flux influence growth and quality of greenhouse-grown lettuce. HortScience 29:1285-1289. doi:10.21273/HORTSCI.29.11.1285
10.21273/HORTSCI.29.11.1285
15 
Gaudreau L, Charbonneau J, Vézina LP, Gosselin A (1995) Effects of photoperiod and photosynthet1c photon flux on nitrate content and nitrate reductase activity in greenhouse-grown lettuce. J Plant Nutr 18:437-453. doi:10.1080/01904169509364914
10.1080/01904169509364914
16 
Glenn EP, Cardran P, Thompson TL (1984) Seasonal effects of shading on growth of greenhouse lettuce and spinach. Sci Hortic 24:231-239. doi:10.1016/0304-4238(84)90106-7
10.1016/0304-4238(84)90106-7
17 
Hashimoto Y, Yi Y, Nyunoya F, Anzai Y, Yamazaki H, Nakayama S, Ikeda A (1987) Vegetable growth as affected by on-off light intensity developed for vegetable factory. Acta Hortic 229:259-264. doi:10.17660/ActaHortic.1988.229.26
10.17660/ActaHortic.1988.229.26
18 
Ikeda A, Nakayama S, Kitaya Y, Yabuki K (1988) Effects of photoperiod, CO2 concentration, and light intensity on growth and net photosynthetic rates of lettuce and turnip. Acta Hortic 229:273-282. doi:10.17660/ActaHortic.1988.229.29
10.17660/ActaHortic.1988.229.29
19 
Inada K, Yabumoto Y (1989) Effect of light quality, daylength and periodic temperature variation on the growth of lettuce and radish plants. Jpn J Crop Sci 58:689-694. doi:10.1626/jcs.58.689
10.1626/jcs.58.689
20 
Jeon Y-M, Son K-H, Kim S-M, Oh M-M (2017) Growth and bioactive compounds as affected by irradiation with various spectrum of light-emitting diode lights in dropwort. Hortic Environ Biotechnol 58:467-478. doi:10.1007/s13580-017-0354-3
10.1007/s13580-017-0354-3
21 
Jeon Y-M, Son K-H, Kim S-M, Oh M-M (2018) Growth of dropwort plants and their accumulation of bioactive compounds after exposure to UV lamp or LED irradiation. Hortic Environ Biotechnol 59:659-670. doi:10.1007/s13580-018-0076-1
10.1007/s13580-018-0076-1
22 
Kang JH, KrishnaKumar S, Atulba SLS, Jeong BR, Hwang SJ (2013) Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic Environ Biotechnol 54:501-509. doi:10.1007/s13580-013-0109-8
10.1007/s13580-013-0109-8
23 
Kelly N, Choe D, Meng Q, Runkle ES (2020) Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Sci Hortic 272:109565. doi:10.1016/j.scienta.2020.109565
10.1016/j.scienta.2020.109565
24 
Kim YH, Kim HJ, Lee JW, Kim JM (2008) Growth of potato plug seedlings as affected by photosynthetic photon flux in a closed transplants production system. Biosyst Eng 33:106-114. doi:10.5307/JBE.2008.33.2.106
10.5307/JBE.2008.33.2.106
25 
Kim YH, Lee CH (1998) Light intensity and spectral characteristics of fluorescent lamps as artificial light source for close illumination in transplant production factory. J Kor Soc Agric Mach 23:591-598
26 
Kitaya Y, Niu G, Kozai T, Ohashi M (1998) Photosynthetic photon flux, photoperiod, and CO2 concentration affect growth and morphology of lettuce plug transplants. HortScience 33:988-991. doi:10.21273/HORTSCI.33.6.988
10.21273/HORTSCI.33.6.988
27 
Knight SL, Mitchell CA (1983a) Enhancement of lettuce yield by manipulation of light and nitrogen nutrition. HortScience 18:750-754
28 
Knight SL, Mitchell CA (1983b) Stimulation of lettuce productivity by manipulation of diurnal temperature and light. HortScience 18:462-463
29 
Koontz HV, Prince RP (1986) Effect of 16 and 24 hours daily radiation (light) on lettuce growth. HortScience 21:123-124
30 
Lee JG, Lee BY, Lee HJ (2006) Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci Hortic 110:119-128. doi:10.1016/j.scienta.2006.06.013
10.1016/j.scienta.2006.06.013
31 
Lee JS, Lee HI, Kim YH (2012) Seedling quality and early yield after transplanting of paprika nursed under light-emitting diodes, fluorescent lamps and natural light. J Bio-Environ Control 21:220-227
32 
Lee MJ, Park SY, Oh MM (2015) Growth and cell division of lettuce plants under various ratios of red to far-red light-emitting diodes. Hortic Environ Biotechnol 56:186-194. doi:10.1007/s13580-015-0130-1
10.1007/s13580-015-0130-1
33 
Lee MJ, Son JE, Oh MM (2014) Growth and phenolic compounds of Lactuca sativa L. grown in a closed-type plant production system with UV-A, -B, or -C lamp. J Sci Food Agric 94:197-204. doi:10.1002/jsfa.6227
10.1002/jsfa.622723670268
34 
Lee MJ, Son KH, Oh MM (2016) Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic Environ Biotechnol 57:139-147. doi:10.1007/s13580-016-0133-6
10.1007/s13580-016-0133-6
35 
Lee YJ, Oh WS, Lee SS, Moon GW (2005) Comparative study on sinusoidal and square wave driving methods of EEFL (external electrode fluorescent lamp) for LCD TV backlight. Power Electronics Ann Conf (July 2005). pp 325-328. doi:10.1109/PESC.2005.1581768
10.1109/PESC.2005.158176815855575
36 
Lefsrud MG, Kopsell D A, Augé RM, Both AJ (2006) Biomass production and pigment accumulation in kale grown under increasing photoperiods. HortScience 41:603-606. doi:10.21273/HORTSCI.41.3.603
10.21273/HORTSCI.41.3.603
37 
Li K, Yang QC, Tong YX, Cheng R (2014) Using movable light-emitting diodes for electricity savings in a plant factory growing lettuce. HortTechnology 24:546-553. doi:10.21273/HORTTECH.24.5.546
10.21273/HORTTECH.24.5.546
38 
McNellis TW, Deng XW (1995) Light control of seedling morphogenetic pattern. Plant Cell 7:1749-1763. doi:10.2307/3870184
10.2307/38701848535132PMC161035
39 
Nicolle C, Carnat A, Fraisse D, Lamaison J, Rock E, Michel H, Amouroux P, Remesy C (2004) Characterization and variation of antioxidant micronutrients in lettuce (Lactuca sativa folium). J Sci Food Agric 84:2061-2069. doi:10.1002/jsfa.1916
10.1002/jsfa.1916
40 
Ohyama K, Manabe K, Omura Y, Kozai T, Kubota C (2005) Potential use of a 24-hour photoperiod (continuous light) with alternating air temperature for production of tomato plug transplants in a closed system. HortScience 40:374-377. doi:10.21273/HORTSCI.40.2.374
10.21273/HORTSCI.40.2.374
41 
Park IS, Cho KJ, Kim J, Cho JY, Lim TJ, Oh W (2016) Growth and flowering responses of petunia to various artificial light sources with different light qualities. Korean J Hortic Sci Technol 34:55-66. doi:10.12972/kjhst.20160016
10.12972/kjhst.20160016
42 
Park JE, Park YG, Jeong BR, Hwang SJ (2012) Growth and anthocyanin content of lettuce as affected by artificial light source and photoperiod in a closed-type plant production system. Korean J Hortic Sci Technol 30:673-679. doi:10.7235/hort.2012.12020
10.7235/hort.2012.12020
43 
Park JE, Park YG, Jeong BR, Hwang SJ (2013) Growth of lettuce in closed-type plant production system as affected light intensity and photoperiod under influence of white LED light. Prot Hortic Plant Fact 22:228-233. doi:10.12791/KSBEC.2013.22.3.228
10.12791/KSBEC.2013.22.3.228
44 
Park MH, Lee YB (1999) Effect of light intensity and nutrient level on growth and quality of leaf lettuce in a plant factory. J Bio-Environ Control 8:108-114
45 
Pavlou GC, Ehaliotis CD, Kavvadias VA (2007) Effect of organic and inorganic fertilizers applied during successive crop seasons on growth and nitrate accumulation in lettuce. Sci Hortic 111:319-325. doi:10.1016/j.scienta.2006.11.003
10.1016/j.scienta.2006.11.003
46 
Pérez-López U, Miranda-Apodaca J, Muñoz-Rueda A, Mena-Petite A (2013) Lettuce production and antioxidant capacity are differentially modified by salt stress and light intensity under ambient and elevated CO2. J Plant Physiol 170:1517-1525. doi:10.1016/j.jplph.2013.06.004
10.1016/j.jplph.2013.06.00423838124
47 
Samuolienė G, Brazaitytė A, Sirtautas R, Viršilė A, Sakalauskaitė J, Sakalauskienė S, Duchovskis P (2013) LED illumination affects bioactive compounds in romaine baby leaf lettuce. J Sci Food Agric 93:3286-3291. doi:10.1002/jsfa.6173
10.1002/jsfa.617323584932
48 
Sase S, Ling PP (1996) Quantification of lighting spectral quality effect on lettuce development using machine vision. Acta Hortic 440:434-439. doi:10.17660/ActaHortic.1996.440.76
10.17660/ActaHortic.1996.440.76
49 
Son KH, Oh MM (2013) Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. doi:10.21273/HORTSCI.48.8.988
10.21273/HORTSCI.48.8.988
50 
Son KH, Park JH, Kim DI, Oh MM (2012) Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J Hortic Sci Technol 30:664-672. doi:10.7235/hort.2012.12063
10.7235/hort.2012.12063
51 
Sysoeva MI, Markovskaya EF, Shibaeva TG (2010) Plants under continuous light: a review. Plant Stress 4:5-17
52 
Technical Information Institute Co, Ltd (TIIC) (2009) A plant factory business strategy and the latest cultivation technology. TIIC, Tokyo, Japan
53 
Thomas B, Vince-Prue D (1997) Photoperiodism in plants, 2nd ed. Academic Press, San Diego, CA, USA, pp 344-349
54 
Tibbitts TW, Morgan DC, Warrington JJ (1983) Growth of lettuce, spinach, mustard, and wheat plants under four combinations of high-pressure sodium, metal halide and tungsten halogen lamps at equal PPFD. J Am Soc Hortic Sci 108:622-630
55 
Um YC, Jang YA, Lee JG, Kim SY, Cheong SR, Oh SS, Cha SH, Hong SC (2009) Effect of selective light sources on seedling quality of tomato and cucumber in closed nursery system. J Bio-Environ Control 18:370-376
56 
Um YC, Oh SS, Lee JG, Kim SY, Jang YA (2010) The development of container-type plant factory and growth of leafy vegetables as affected by different light sources. J Bio-Environ Control 19:333-342
57 
Vlahos JC, Heuvelink E, Martakis GFP (1991) A growth analysis study of three Achimenes cultivars grown under three light regimes. Sci Hortic 46:275-282. doi:10.1016/0304-4238(91)90050-9
10.1016/0304-4238(91)90050-9
58 
Wang H, Gu M, Cui J, Shi K, Zhou Y, Yu J (2009) Effects of light quality on CO2 assimilation, chlorophyll-fluorescence quenching, expression of Calvin cycle genes and carbohydrate accumulation in Cucumis sativus. J Photochem Photobiol 96:30-37. doi:10.1016/j.jphotobiol.2009.03.010
10.1016/j.jphotobiol.2009.03.01019410482
59 
Wu M, Hou C, Jiang C, Wang Y, Wang C, Chen H, Chang H (2007) A novel approach of LED light radiation improves the antioxidant activity of pea seedlings. Food Chem 101:1753-1758. doi:10.1016/j.foodchem.2006.02.010
10.1016/j.foodchem.2006.02.010
60 
Yamazaki K (1982) Nutrient Solution Culture (Japanese). Pak-kyo Co., Tokyo, Japan, p 251
61 
Yan Z, He D, Niu G, Zhai H (2019a) Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Sci Hortic 248:138-144. doi:10.1016/j.scienta.2019.01.002
10.1016/j.scienta.2019.01.002
62 
Yan Z, He D, Niu G, Zhou Q, Qu Y (2019b) Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as influenced by daily light integrals exposed to white versus white plus red light-emitting diodes. HortScience 54:1737-1744. doi:10.21273/HORTSCI14236-19
10.21273/HORTSCI14236-19
63 
Zhang X, He DX, Niu GH, Yan ZN, Song JX (2018) Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. Int J Agric Biol Eng 11:33-40. doi:10.25165/j.ijabe.20181102.3240
10.25165/j.ijabe.20181102.3240
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :5
  • Pages :645-659
  • Received Date :2020. 07. 14
  • Revised Date :2020. 08. 05
  • Accepted Date : 2020. 08. 20