All Issue

2020 Vol.38, Issue 5

Research Article


October 2020. pp. 583-594
Abstract


References
1 
Arbona V, Iglesias DJ, Jacas J, Primo-Millo E, Talon M, Gómez-Cadenas, A (2005) Hydrogel substrate amendment alleviates drought effects on young citrus plants. Plant Soil 270:73-82. doi:10.1007/s11104-004-1160-0
10.1007/s11104-004-1160-0
2 
Atkinson CJ, Policarpo M, Webster AD, Kingswell G (2000) Drought tolerance of clonal Malus determined from measurements of stomatal conductance and leaf water potential. Tree Physiol 20:557-563. doi:10.1093/treephys/20.8.557
10.1093/treephys/20.8.55712651437
3 
Auvil TD, Schmidt TR, Hanrahan I, Castillo F, McFerson JR, Fazio G (2011) Evaluation of dwarfing rootstocks in Washington apple replant sites. Acta Hortic 903:265-271. doi:10.17660/ActaHortic.2011903.33
10.17660/ActaHortic.2011.903.33
4 
Bauerle TL, Centinari M, Bauerle WL (2011) Shifts in xylem vessel diameter and embolisms in grafted apple trees of differing rootstock growth potential in response to drought. Planta 234:1045-1054. doi:10.1007/s00425-011-1460-6
10.1007/s00425-011-1460-621710199
5 
Beyá-Marshall V, Herrera J, Fichet T, Trentacoste ER, Kremer C (2018) The effect of water status on productive and flowering variables in young 'Arbequina' olive trees under limited irrigation water availability in a semiarid region of Chile. Hortic Environ Biotechnol 59:815-826. doi:10.1007/s13580-018-0088-x
10.1007/s13580-018-0088-x
6 
Blackman CJ, Brodribb TJ, Jordan GJ (2009) Leaf hydraulics and drought stress: response, recovery and survivorship in four woody temperate plant species. Plant Cell Environ 32:1584-1595. doi:10.1111/j.1365-3040.2009.02023.x
10.1111/j.1365-3040.2009.02023.x19627564
7 
Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C (2015) How tree roots respond to drought. Front Plant Sci 6:547. doi:10.3389/fpls.2015.00547
10.3389/fpls.2015.0054726284083PMC4518277
8 
Chaves MM, Pereira JS, Maroco J, Rodrigues ML, Ricardo CPP, Osório ML, Carvalho I, Faria T, Pinheiro C (2002) How plants cope with water stress in the field? Photosynthesis and growth. Ann Bot 89:907-916. doi:10.1093/aob/mcf105
10.1093/aob/mcf10512102516PMC4233809
9 
Cochard H, Bréda N, Granier A (1996) Whole tree hydraulic conductance and water loss regulation in Quercus during drought: evidence for stomatal control of embolism? Ann Sci For 53:197-206. doi:10.1051/forest:19960203
10.1051/forest:19960203
10 
Comas LH, Becker SR, Cruz VMV, Byrne PF, Dierig DA (2013) Root traits contributing to plant productivity under drought. Front Plant Sci 4:442. doi:10.3389/fpls.2013.00442
10.3389/fpls.2013.0044224204374PMC3817922
11 
Conesa MR, de la Rosa JM, Domingo R, Bañon S, Pérez-Pastor A (2016) Changes induced by water stress on water relations, stomatal behaviour and morphology of table grapes (cv. Crimson Seedless) grown in pots. Sci Hortic 202:9-16. doi:10.1016/j.scienta.2016.02.002
10.1016/j.scienta.2016.02.002
12 
Corso M, Bonghi C (2014) Grapevine rootstock effects on abiotic stress tolerance. Plant Sci Today 1:108-113. doi:10.14719/pst.2014.1.3.64
10.14719/pst.2014.1.3.64
13 
Cui N, Du T, Li F, Tong L, Kang S, Wang M, Liu X, Li Z (2009) Response of vegetative growth and fruit development to regulated deficit irrigation at different growth stages of pear-jujube tree. Agric Water Manag 96:1237-1246. doi:10.1016/j.agwat.2009.03.015
10.1016/j.agwat.2009.03.015
14 
Fernandez RT, Perry RL, Flore JA (1997) Drought response of young apple trees on three rootstocks: growth and development. J Am Soc Hortic Sci 122:14-19. doi:10.21273/JASHS.122.1.14
10.21273/JASHS.122.1.14
15 
Giorio P, Sorrentino G, d'Andria R (1999) Stomatal behaviour, leaf water status and photosynthetic response in field-grown olive trees under water deficit. Environ Exp Bot 42:95-104. doi:10.1016/S0098-8472(99)00023-4
10.1016/S0098-8472(99)00023-4
16 
Girona J, Behboudian MH, Mata M, Del Campo J, Marsal J (2010) Exploring six reduced irrigation options under water shortage for 'Golden Smoothee' apple: responses of yield components over three years. Agric Water Manag 98:370-375. doi:10.1016/j.agwat.2010.09.011
10.1016/j.agwat.2010.09.011
17 
Guerfel M, Baccouri O, Boujnah D, Chaïbi W, Zarrouk M (2009) Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars. Sci Hortic 119:257-263. doi:10.1016/j.scienta.2008.08.006
10.1016/j.scienta.2008.08.006
18 
Kramer PJ (1983a) Drought tolerance and water use efficiency. In PJ Kramer, ed, Water Relations of Plants. Academic Press, New York, USA, pp 390-415. doi:10.1016/B978-0-12-425040-6.50016-3
10.1016/B978-0-12-425040-6.50016-3
19 
Kramer PJ (1983b) Development of root systems. In PJ Kramer, ed, Water Relations of Plants. Academic Press, New York, USA, pp 146-186. doi:10.1016/B978-0-12-425040-6.50009-6
10.1016/B978-0-12-425040-6.50009-6
20 
Kwak MJ, Lee SH, Woo SY (2011) Physiological and biochemical traits of different water and light intensities on cork oak (Quercus suber L.) seedlings. Afr J Biotechnol 10:15305-15319. doi:10.5897/AJB11.2845
10.5897/AJB11.2845
21 
Li F, Cohen S, Naor A, Shaozong K, Erez A (2002) Studies of canopy structure and water use of apple trees on three rootstocks. Agric Water Manag 55:1-14. doi:10.1016/S0378-3774(01)00184-6
10.1016/S0378-3774(01)00184-6
22 
Liu BH, Cheng L, Ma FW, Liang D, Zou YJ (2012) Influence of rootstock on drought response in young 'Gale Gala' apple (Malus domestica Borkh.) trees. J Sci Food Agric 92:2421-2427. doi:10.1002/jsfa.5647
10.1002/jsfa.564722430615
23 
Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205-214. doi:10.1016/j.envexpbot.2004.03.015
10.1016/j.envexpbot.2004.03.015
24 
Nilsen ET, Orcutt DM (1996) Physiology of Plants under Stress: Abiotic Factors. John Wiley & Sons, Inc., New York, USA, pp 322-361
25 
Pedroso FKJV, Prudente DA, Bueno ACR, Machado EC, Ribeiro RV (2014) Drought tolerance in citrus trees is enhanced by rootstock-dependent changes in root growth and carbohydrate availability. Environ Exp Bot 101:26-35. doi:10.1016/j.envexpbot.2013.12.024
10.1016/j.envexpbot.2013.12.024
26 
Psarras G, Merwin IA (2000) Water stress affects rhizosphere respiration rates and root morphology of young 'Mutsu' apple trees on M.9 and MM.111 rootstocks. J Am Soc Hortic Sci 125:588-595. doi:10.21273/JASHS.125.5.588
10.21273/JASHS.125.5.588
27 
Robinson TL, Fazio G, Aldwinckle HS, Hoying SA, Russo N (2006) Field performance of Geneva® apple rootstocks in the Eastern USA. Sodinink Daržinink 25:181-191
28 
Rodríguez-Gamir J, Intrigliolo DS, Primo-Millo E, Forner-Giner MA (2010) Relationships between xylem anatomy, root hydraulic conductivity, leaf/root ratio and transpiration in citrus trees on different rootstocks. Physiol Plant 139:159-169. doi:10.1111/j.1399-3054.2010.01351.x
10.1111/j.1399-3054.2010.01351.x20088906
29 
Serra I, Strever A, Myburgh PA, Deloire A (2014) Review: the interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Aust J Grape Wine Res 20:1-14. doi:10.1111/ajgw.12054
10.1111/ajgw.12054
30 
Šircelj H, Tausz M, Grill D, Batič F (2007) Detecting different levels of drought stress in apple trees (Malus domestica Borkh.) with selected biochemical and physiological parameters. Sci Hortic 113:362-369. doi:10.1016/j.scienta.2007.04.012
10.1016/j.scienta.2007.04.012
31 
Sparks JP, Black RA (1999) Regulation of water loss in populations of Populus trichocarpa: the role of stomatal control in preventing xylem cavitation. Tree Physiol 19:453-459. doi:10.1093/treephys/19.7.453
10.1093/treephys/19.7.45312651551
32 
Thalheimer M (2013) A low-cost electronic tensiometer system for continuous monitoring of soil water potential. J Agric Eng 44:114-119. doi:10.4081/jae.2013.e16
10.4081/jae.2013.e16
33 
Wang Z, Stutte GW (1992) The role of carbohydrates in active osmotic adjustment in apple under water stress. J Am Soc Hortic Sci 117:816-823. doi:10.21273/JASHS.117.5.816
10.21273/JASHS.117.5.816
34 
Wu Y, Cosgrove DJ (2000) Adaptation of roots to low water potentials by changes in cell wall extensibility and cell wall proteins. J Exp Bot 51:1543-1553. doi:10.1093/jexbot/51.350.1543
10.1093/jexbot/51.350.154311006305
35 
Yıldırım K, Yağcı A, Sucu S, Tunç S (2018) Responses of grapevine rootstocks to drought through altered root system architecture and root transcriptomic regulations. Plant Physiol Biochem 127:256-268. doi:10.1016/j.plaphy.2018.03.034
10.1016/j.plaphy.2018.03.03429627732
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :5
  • Pages :583-594
  • Received Date :2020. 04. 01
  • Revised Date :2020. 05. 26
  • Accepted Date : 2020. 06. 11