All Issue

2020 Vol.38, Issue 2 Preview Page

Research Article


April 2020. pp. 201-209
Abstract


References
1 

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, et al. (2016) TensorFlow: A system for large-scale machine learning. In Proceedings of 12th USENIX OSDI, 265-283. Savanah, GA, USA, 02-04 November 2016

2 

Ba JL, Kiros JR, Hinton GE (2016) Layer normalization. arXiv preprint arXiv:1607.06450

3 

Boulard T, Kittas C, Roy JC, Wang S (2002) SE-structures and environment: Convective and ventilation transfers in greenhouses, part 2: Determination of the distributed greenhouse climate. Biosyst Eng 83:129-147. doi:10.1006/bioe.2002.0114

10.1006/bioe.2002.0114
4 

Cock JH, Yoshida S (1973) Photosynthesis, crop growth, and respiration of a tall and short rice varieties. Soil Sci Plant Nutr 19:53-59. doi:10.1080/00380768.1973.10432519

10.1080/00380768.1973.10432519
5 

Davison IR (1991) Environmental effects on algal photosynthesis: Temperature. J Phycol 27:2-8. doi:10.1111/j.0022-3646.1991.00002.x

10.1111/j.0022-3646.1991.00002.x
6 

Donohue RJ, Roderick ML, McVicar TR, Farquhar GD (2013) Impact of CO2 fertilization on maximum foliage cover across the globe's warm, arid environments. Geophys Res Lett 40:3031-3035. doi:10.1002/grl.50563

10.1002/grl.50563
7 

Gifford RM, Rawson HM (1994) Investigation of wild and domesticated vegetation in CO2 enriched greenhouses. In Proc. IGBP Workshop on Design and Execution of Experiments on CO2 Enrichment, Weidenberg, Germany, October 26-30, 1992

8 

Goto E (2012) Plant production in a closed plant factory with artificial lighting. Acta Hortic 956:37-49. doi:10.17660/ActaHortic.2012.956.2

10.17660/ActaHortic.2012.956.2
9 

Graamans L, Baeza E, Van Den Dobbelsteen A, Tsafaras I, Stanghellini C (2018) Plant factories versus greenhouses: Comparison of resource use efficiency. Agric Syst 160:31-43. doi:10.1016/j.agsy.2017.11.003

10.1016/j.agsy.2017.11.003
10 

Greff K, Srivastava RK, Koutník J, Steunebrink BR, Schmidhuber J (2017) LSTM: A search space odyssey. IEEE Trans Neural Netw Learn Syst 28:2222-2232. doi:10.1109/TNNLS.2016.2582924

10.1109/TNNLS.2016.258292427411231
11 

Han S, Kang J, Mao H, Hu Y, Li X, Li Y, Xie D, Luo H, Yao S, et al. (2017) ESE: Efficient speech recognition engine with sparse LSTM on FPGA. Proceedings of the 2017 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays 75-84. doi:10.1145/3020078.3021745

10.1145/3020078.3021745
12 

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9:1735-1780. doi:10.1162/neco.1997.9.8.1735

10.1162/neco.1997.9.8.17359377276
13 

Hu Q, Zhang R, Zhou Y (2016) Transfer learning for short-term wind speed prediction with deep neural networks. Renew Energ 85:83-95. doi:10.1016/j.renene.2015.06.034

10.1016/j.renene.2015.06.034
14 

Jung DH, Kim D, Yoon HI, Moon TW, Park KS, Son JE (2016) Modeling the canopy photosynthetic rate of romaine lettuce (Lactuca sativa L.) grown in a plant factory at varying CO2 concentrations and growth stages. Hortic Environ Biotechnol 57:487-492. doi:10.1007/s13580-016-0103-z

10.1007/s13580-016-0103-z
15 

Kamilaris A, Prenafeta-Boldú FX (2018) Deep learning in agriculture: A survey. Comput Electron Agric 147:70-90. doi:10.1016/j.compag.2018.02.016

10.1016/j.compag.2018.02.016
16 

Kaplan A, Badger MR, Berry JA (1980) Photosynthesis and the intracellular inorganic carbon pool in the bluegreen alga Anabaena variabilis: Response to external CO2 concentration. Planta 149:219-226. doi:10.1007/BF00384557

10.1007/BF0038455724306290
17 

Kingma D, Ba J (2014) Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980v9

18 

Kläring HP, Hauschild C, Heißner A, Bar-Yosef B (2007) Model-based control of CO2 concentration in greenhouses at ambient levels increasescu cumber yield. Agric Forest Meteorol 143:208-216. doi:10.1016/j.agrformet.2006.12.002

10.1016/j.agrformet.2006.12.002
19 

Lashof DA (1989) The dynamic greenhouse: Feedback processes that may influence future concentrations of atmospheric trace gases and climatic change. Climatic Change 14:213-242. doi:10.1007/BF00134964

10.1007/BF00134964
20 

Lawlor DW (1995) Photosynthesis, productivity and environment. J Exp Bot 1449-1461. doi:10.1093/jxb/46.special_issue.1449

10.1093/jxb/46.special_issue.1449
21 

Linker R, Seginer I, Gutman PO (1998) Optimal CO2 control in a greenhouse modeled with neural networks. Comput Electron Agric 19:289-310. doi:10.1016/S0168-1699(98)00008-8

10.1016/S0168-1699(98)00008-8
22 

Liu Y, Racah E, Correa J, Khosrowshahi A, Lavers D, Kunkel K, Wehner M, Collins W (2016) Application of deep convolutional neural networks for detecting extreme weather in climate datasets. arXiv preprint arXiv:1605.01156

23 

Lotfiomran N, Köhl M, Fromm J (2016) Interaction effect between elevated CO2 and fertilization on biomass, gas exchange and C/N ratio of European beech (Fagus sylvatica L.). Plants 5:38. doi:10.3390/plants5030038

10.3390/plants503003827618119PMC5039746
24 

Maroco JP, Breia E, Faria T, Pereira JS, Chaves MM (2002) Effects of long‐term exposure to elevated CO2 and N fertilization on the development of photosynthetic capacity and biomass accumulation in Quercus suber L. Plant Cell Environ 25:105-113. doi:10.1046/j.0016-8025.2001.00800.x

10.1046/j.0016-8025.2001.00800.x
25 

McGrath JM, Lobell DB (2013) Regional disparities in the CO2 fertilization effect and implications for crop yields. Environ Res Lett 8:014054. doi:10.1088/1748-9326/8/1/014054

10.1088/1748-9326/8/1/014054
26 

Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves A, Riedmiller M, Fidjeland, AK, et al. (2015) Human-level control through deep reinforcement learning. Nature 518:529-533. doi:10.1038/nature14236

10.1038/nature1423625719670
27 

Moon T, Ahn TI, Son JE (2018a) Forecasting root-zone electrical conductivity of nutrient solutions in closed-loop soilless cultures via a recurrent neural network using environmental and cultivation information. Front Plant Sci 9:859. doi:10.3389/fpls.2018.00859

10.3389/fpls.2018.0085929977249PMC6021533
28 

Moon TW, Jung DH, Chang SH, Son JE (2018b) Estimation of greenhouse CO2 concentration via an artificial neural network that uses environmental factors. Hortic Environ Biotechnol 59:45-50. doi:10.1007/s13580-018-0015-1

10.1007/s13580-018-0015-1
29 

Moon T, Ahn TI, Son JE (2019) Long short-term memory for a model-free estimation of macronutrient ion concentrations of root-zone in closed-loop soilless cultures. Plant Methods 15:59. doi:10.1186/s13007-019-0443-7

10.1186/s13007-019-0443-731160918PMC6540585
30 

Oechel WC, Cowles S, Grulke N, Hastings SJ, Lawrence B, Prudhomme T, Riechers G, Strain B, Tissue D, et al. (1994) Transient nature of CO2 fertilization in Arctic tundra. Nature 371:500. doi:10.1038/371500a0

10.1038/371500a0
31 

Oord AVD, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499

32 

Roy JC, Boulard T, Kittas C, Wang S (2002) PA-Precision Agriculture: Convective and ventilation transfers in greenhouses, Part 1: The greenhouse considered as a perfectly stirred tank. Biosyst Eng 83:1-20. doi:10.1006/bioe.2002.0107

10.1006/bioe.2002.0107
33 

Rumelhart DE, Hinton GE, Williams RJ (1988) Learning representations by back-propagating errors. Cognit Model 5:1

34 

Rußwurm M, Körner, M (2017) Multi-temporal land cover classification with long short-term memory neural networks. Int Arch Photogramm Remote Sens Spat Inf Sci 42:551. doi:10.5194/isprs-archives-XLII-1-W1-551-2017

10.5194/isprs-archives-XLII-1-W1-551-2017
35 

Sharma-Natu P, Khan FA, Ghildiyal MC (1998) Photosynthetic acclimation to elevated CO2 in wheat cultivars. Photosynthetica 34:537-543. doi:10.1023/A:1006809412319

10.1023/A:1006809412319
36 

Silver D, Huang A, Maddison CJ, Guez A, Sifre L, Van Den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, et al. (2016) Mastering the game of Go with deep neural networks and tree search. Nature 529:484-489. doi:10.1038/nature16961

10.1038/nature1696126819042
37 

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In Z Ghahramani, M Welling, C Cortes, ND Lawrence, KQ Weinberger, eds, Advances in Neural Information Processing Systems, Ed 27, pp 3104-3112

38 

Wang X, Gao L, Song J, Shen H (2017) Beyond frame-level CNN: Saliency-aware 3-D CNN with LSTM for video action recognition. IEEE Signal Process Lett 24:510-514. doi:10.1109/LSP.2016.2611485

10.1109/LSP.2016.2611485
39 

Wen TH, Gasic M, Mrksic N, Su PH, Vandyke D, Young S (2015) Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. arXiv preprint arXiv:1508.01745. doi:10.18653/v1/D15-1199

10.18653/v1/D15-119925851951
40 

William WE, Garbutt K, Bazzaz FA, Vitousek PM (1986) The response of plants to elevated CO2. Oecologia 69:454-459. doi:10.1007/BF00377068

10.1007/BF0037706828311348
41 

Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, et al. (2016) Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144

42 

Zhang J, Zhu Y, Zhang X, Ye M, Yang J (2018) Developing a long short-term memory (LSTM) based model for predicting water table depth in agricultural areas. J Hydrol 561:918-929. doi:10.1016/j.jhydrol.2018.04.065

10.1016/j.jhydrol.2018.04.065
43 

Zhao F, Feng J, Zhao J, Yang W, Yan S (2018) Robust LSTM-autoencoders for face de-occlusion in the wild. IEEE Trans Image Process 27:778-790. doi:10.1109/TIP.2017.2771408

10.1109/TIP.2017.277140829757731
Information
  • Publisher :KOREAN SOCIETY FOR HORTICULTURAL SCIENCE
  • Publisher(Ko) :원예과학기술지
  • Journal Title :Horticultural Science and Technology
  • Journal Title(Ko) :원예과학기술지
  • Volume : 38
  • No :2
  • Pages :201-209
  • Received Date :2019. 08. 03
  • Revised Date :2019. 09. 21
  • Accepted Date : 2020. 01. 26